Nonmeasurable unions, around Fremlin-Todorcevic theorem

Taras Banakh, Robert Rałowski, Szymon Żeberski Wrocław University of Science and Technology

Winter School Hejnice, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Brzuchowski, Cichoń, Grzegorek, Ryll-Nardzewski)

Let X - Polish space, $\mathcal{I} \subseteq P(X)$ - σ -ideal with Borel base. If

- $\blacktriangleright \mathcal{J} \subseteq \mathcal{I}$ point-finite family, i.e. $\forall x \in X \{A \in A : x \in A\}$ is finite,
- $\blacktriangleright \mid \mathcal{J} \notin \mathcal{I},$

then there exists $\mathcal{J}' \subseteq \mathcal{J}$ such that $\bigcup \mathcal{J}'$ is not \mathcal{I} -measurable, i.e. does not belong to the σ -field generated by σ -ideal $\mathcal I$ and σ -field of all Borel subsets Bor(X).

- K. Kuratowski, A theorem on ideals and some applications of it to the Baire property in Polish spaces, USPEKHI MATEMATICHESKIKH NAUK, 31 (1976), 108-111.

- L. Bukovsky, Any partition into Lebesgue measure zero sets produces a nonmeasurable set, BULLETIN OF THE POLISH ACADEMY OF SCIENCES MATHEMATICS, 27, (1979), 431-435.
- J. Brzuchowski, J. Cichoń, E. Grzegorek, Cz. Rvll-Nardzewski, On the existence of nonmeasurable unions, BULLETIN OF THE POLISH ACADEMY OF SCIENCES MATHEMATICS, 27, (1979), 447-448.

Theorem(Fremlin, Todorcevic)

If $\mathcal{J}\subseteq\mathcal{N}$ is a partition of [0,1] and $\varepsilon>0$ then there exists $\mathcal{J}'\subseteq\mathcal{J}$ such that

$$\lambda_*(\bigcup \mathcal{J}') < \varepsilon \text{ and } \lambda^*(\bigcup \mathcal{J}') > 1 - \varepsilon.$$

Theorem(Cichoń, Rałowski, Ryll-Nardzewski, Morayne, Żeberski) If $\mathcal{J} \subseteq \mathcal{M}$ is a partition of [0, 1] then there exists $\mathcal{J}' \subseteq \mathcal{J}$ such

If $\mathcal{J} \subseteq \mathcal{M}$ is a partition of [0, 1] then there exists $\mathcal{J}' \subseteq \mathcal{J}$ such that $\bigcup \mathcal{J}'$ is completely \mathcal{M} -nonmeasurable.

Fremlin, S. Todorcevic, Partitions of [0,1] into negligible sets, https://www1.essex.ac.uk/maths/people/fremlin/n04607.ps, (2004).

J. Cichoń, M. Morayne, R. Rałowski, C. Ryll-Nardzewski, S. Żeberski, *On nonmeasurable unions*, TOPOLOGY AND ITS APPLICATIONS, **154** (2007), 884-893.

Set-Cover game $\partial_{\mathcal{S},\mathcal{C}}$

Two players S and C on a set X, endowed with two families of subsets S and C.

The player S starts the game choosing a set $S_0 \in S$ and the player C answers suggesting a countable cover $C_0 \subseteq C$ of S_0 .

Set-Cover game $\mathcal{D}_{\mathcal{S},\mathcal{C}}$

Two players S and C on a set X, endowed with two families of subsets S and C.

The player S starts the game choosing a set $S_0 \in S$ and the player C answers suggesting a countable cover $C_0 \subseteq C$ of S_0 .

At the *n*-th inning player S selects a set $S_n \in S$ with $S_n \prec C_{n-1}$ and player C answers with a countable cover $C_n \in C$ of the set S_n .

The player C is declared the winner if $\bigcap_{n \in \omega} S_n \neq \emptyset$.

Main result

Let \mathcal{I} be a σ -ideal on a set X and \mathcal{S}, \mathcal{C} be two families of subsets of a set X such that the player C has a winning strategy in the game $\partial_{\mathcal{S}\setminus\mathcal{I},\mathcal{C}}$. For every point-finite subfamily $\mathcal{J}\subseteq\mathcal{I}$ of cardinality $0 < |\mathcal{J}| \leq \mathfrak{c}$, there exists a Cantor scheme $(\mathcal{J}_s)_{s\in 2^{<\omega}}$ with $\mathcal{J}_{\emptyset} = \mathcal{J}$ that has the following properties.

- 1. For any set $S \subseteq X$ with $S \cap \bigcup \mathcal{J} \notin \mathcal{I}$, the set $\{t \in 2^{<\omega} : S \cap \bigcup \mathcal{J}_t \notin \mathcal{I}\}$ is a perfect subtree of the tree $2^{<\omega}$.
- 2. For any $\sigma \in 2^{<\omega}$ and $S \in S$ with $S \cap \bigcup \mathcal{J}_{\sigma} \notin \mathcal{I}$, there exist a sequence $s \in 2_{\sigma}^{<\omega}$ and a set $C \in \mathcal{C}(S)$ with $C \cap \bigcup \mathcal{J}_{s} \notin \mathcal{I}$ such that the set $\{t \in 2_{s}^{<\omega} : S(C \cap \bigcup \mathcal{J}_{t}) \not\subseteq \mathcal{I}\}$ is a chain in the tree $2^{<\omega}$.
- 3. For any $\sigma \in 2^{<\omega}$ and $S \in S$ with $S \cap \bigcup \mathcal{J}_{\sigma} \notin \mathcal{I}$, there exist a sequence $s \in 2^{<\omega}$ and a set $C \in \mathcal{C}(S)$ such that $\sigma \subset s$, $C \cap \bigcup \mathcal{J}_{s} \notin \mathcal{I}$ and $S(C \cap \bigcup \mathcal{J}_{s}) \subseteq \mathcal{I}$.

... main result ...

- 4. For any $\sigma \in 2^{<\omega}$ and $S \in S(\bigcup \mathcal{J}_{\sigma}) \setminus \mathcal{I}$ there exist a sequence $s \in 2^{<\omega}_{\sigma}$ and a set $C \in C(S \cap \bigcup \mathcal{J}_{s}) \setminus \mathcal{I}$ such that the set $\{t \in 2^{<\omega}_{s} : S(C \cap \bigcup \mathcal{J}_{t}) \not\subseteq \mathcal{I}\}$ is a chain in the tree $2^{<\omega}$.
- 5. For any $\sigma \in 2^{<\omega}$ and $S \in \mathcal{S}(\bigcup \mathcal{J}_{\sigma}) \setminus \mathcal{I}$ there exist a sequence $s \in 2^{<\omega}_{\sigma}$ and a set $C \in \mathcal{C}(S \cap \bigcup \mathcal{J}_s) \setminus \mathcal{I}$ such that either $\mathcal{S}(C \setminus J) \subseteq \mathcal{I}$ for some $J \in \mathcal{J}$ or $\mathcal{S}(C \cap \bigcup \mathcal{J}_t) \subseteq \mathcal{I}$ for any sequence $t \in 2^{<\omega}$ with $s \subset t$.
- If the family S is multiplicative and *I*-Lindelöf, then there exists a decreasing sequence (Σ_n)_{n∈ω} ∈ (σS)^ω such that
 - i. for every $n \in \omega$ and $s \in 2^n$ we have $\mathcal{S}(\bigcup \mathcal{J}_s \setminus \Sigma_n) \subseteq \mathcal{I}$;
 - ii. for every $S \in S \setminus I$ there exist $C \in C(S) \setminus I$ such that either $S(C \cap \Sigma_n) \subseteq I$ for some $n \in \omega$ or $S(C \setminus J) \subseteq I$ for some $J \in J$.

Definition

Let \mathcal{I} be an ideal on a set X. A family \mathcal{A} of subsets of X is called

- multilplicative iff for any $A, A' \in \mathcal{A} \ A \cap A' \in \mathcal{A}$;
- ▶ *I*-Lindelöf if for any subset $S \subseteq X$, there exists a countable subfamily $\mathcal{F} \subseteq \mathcal{A}(S)$ such that $\mathcal{A}(S \setminus \bigcup \mathcal{F}) \subseteq \mathcal{I}$;
- *I*-ccc if each disjoint subfamily *F* ⊆ *A* \ *I* is at most countable.

Lemma

Let \mathcal{I} be an ideal on a set X and \mathcal{A} be a family of subsets of X. If \mathcal{A} is \mathcal{I} -ccc, then \mathcal{A} is \mathcal{I} -Lindelöf.

$S \subseteq X$ is

- $(\mathcal{A}, \mathcal{I})$ -measurable if there are sets $A_1, A_2 \in \mathcal{A}$ such that $A_1 \subseteq S \subseteq X \setminus A_2$ and $X \setminus (A_1 \cup A_2) \in \mathcal{I}$;
- $(\mathcal{A}, \mathcal{I})$ -saturated if for any $A \in \mathcal{A}$ with $A \cap S \notin \mathcal{I}$ we have $\mathcal{A}(A \cap S) \not\subseteq \mathcal{I}$;
- ▶ $(A \setminus I)$ -Ramsey if for every $A \in A \setminus I$ there exists $B \in A \setminus I$ such that $B \subseteq A \cap S$ or $B \subseteq A \setminus S$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$S \subseteq X$ is

- $(\mathcal{A}, \mathcal{I})$ -measurable if there are sets $A_1, A_2 \in \mathcal{A}$ such that $A_1 \subseteq S \subseteq X \setminus A_2$ and $X \setminus (A_1 \cup A_2) \in \mathcal{I}$;
- $(\mathcal{A}, \mathcal{I})$ -saturated if for any $A \in \mathcal{A}$ with $A \cap S \notin \mathcal{I}$ we have $\mathcal{A}(A \cap S) \not\subseteq \mathcal{I}$;
- $(\mathcal{A} \setminus \mathcal{I})$ -Ramsey if for every $A \in \mathcal{A} \setminus \mathcal{I}$ there exists $B \in \mathcal{A} \setminus \mathcal{I}$ such that $B \subseteq A \cap S$ or $B \subseteq A \setminus S$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 $\mathcal A$ is $\mathcal I\text{-winning}$ iff C has a winning strategy in the game $\Im_{\mathcal A\setminus\mathcal I,\mathcal A}$

$S \subseteq X$ is

- $(\mathcal{A}, \mathcal{I})$ -measurable if there are sets $A_1, A_2 \in \mathcal{A}$ such that $A_1 \subseteq S \subseteq X \setminus A_2$ and $X \setminus (A_1 \cup A_2) \in \mathcal{I}$;
- $(\mathcal{A}, \mathcal{I})$ -saturated if for any $A \in \mathcal{A}$ with $A \cap S \notin \mathcal{I}$ we have $\mathcal{A}(A \cap S) \not\subseteq \mathcal{I}$;
- ▶ $(A \setminus I)$ -Ramsey if for every $A \in A \setminus I$ there exists $B \in A \setminus I$ such that $B \subseteq A \cap S$ or $B \subseteq A \setminus S$.

 $\mathcal A$ is $\mathcal I\text{-winning}$ iff C has a winning strategy in the game $\Im_{\mathcal A\setminus\mathcal I,\mathcal A}$

Corrolary

Let \mathcal{I} be a σ -ideal on a set X and \mathcal{A} be an \mathcal{I} -winning class of subsets of X. Let $\mathcal{J} \subseteq \mathcal{I}$ be a point-finite subfamily such that $|\mathcal{J}| \leq \mathfrak{c}$.

- 1. If $\bigcup \mathcal{J} \notin \mathcal{I}$, then for some $\mathcal{J}' \subseteq \mathcal{J}$ the union \mathcal{J}' is not $(\mathcal{A}, \mathcal{I})$ -saturated and hence is not $(\sigma \mathcal{A}, \mathcal{I})$ -measurable.
- 2. If $\mathcal{A}(\bigcup \mathcal{J}) \not\subseteq \mathcal{I}$, then for some $\mathcal{J}' \subseteq \mathcal{J}$ the union $\bigcup \mathcal{J}'$ is not $(\mathcal{A} \setminus \mathcal{I})$ -Ramsey.

Polishable families

X - topological space, $\mathcal{A} \subseteq P(X)$.

 \mathcal{A} is Polishable family iff for any $A \in \mathcal{A}$ there are P_A, f_A, \mathcal{B}_A such that

1. P_A is a Polish space, \mathcal{B}_A is a countable topological base of P_A ,

2.
$$f_A: P_A \to X$$
 is continuous and $f[P_A] = A$,

3.
$$\{f_A[B]: B \in \mathcal{B}_A\} \subseteq \mathcal{A}$$
.

Theorem

X - Hausdorff space, $A \subseteq P(X)$ - multiplicative Polishable family, $\mathcal{I} \subseteq P(X) \sigma$ -ideal on X. Then C has a winning strategy in $\partial_{A \setminus \mathcal{I}, \mathcal{A}}$.

Topological space X is

- functionally Hausdorff if for any distinct x, y ∈ X exists map g: X → ℝ s.t. f(x) ≠ f(y),
- analytic if X is functionally Hausdorff and there exists a continuous surjection f : P → X for some Polish space P,
- Borel if X is functionally Hausdorff and there exists a continuous bijection f : P → X for some Polish space P.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Examples of Polishable families

- For every analytic space X, the family Σ¹₁(X) of analytic subspaces is multiplicative Polishable family.
- For every Polish space X, the Borel classes $\Sigma^0_{\alpha}(X), \prod^0_{\alpha}(X)$ and $\Delta^0_{\beta}(X)$ $1 \le \alpha < \beta < \omega_1$ are Polishable and multiplicative.
- For every Borel space X, the family Δ¹₁(X) of Borel subspaces is multiplicative Polishable family.

MB-representation

Given any family \mathcal{F} of subsets of a set X, consider the families

$$\mathcal{S}_0(\mathcal{F}) = \{ A \subseteq X : \forall F \in \mathcal{F} \exists H \in \mathcal{F} \ (H \subseteq F \setminus A) \}$$
$$\mathcal{S}(\mathcal{F}) = \{ A \subseteq X : \forall F \in \mathcal{F} \exists H \in \mathcal{F} \ (H \subseteq F \cap A \lor H \subseteq F \setminus A) \}.$$

MB-representation

Given any family \mathcal{F} of subsets of a set X, consider the families

$$\mathcal{S}_0(\mathcal{F}) = \{ A \subseteq X : \forall F \in \mathcal{F} \exists H \in \mathcal{F} \ (H \subseteq F \setminus A) \}$$
$$\mathcal{S}(\mathcal{F}) = \{ A \subseteq X : \forall F \in \mathcal{F} \exists H \in \mathcal{F} \ (H \subseteq F \cap A \lor H \subseteq F \setminus A) \}.$$

Corollary

Let X be a Polish space and a pair $(\mathcal{B}, \mathcal{I})$ be MB-representable by a family \mathcal{F} consisting of Borel sets. Assume that \mathcal{B} contains all Borel sets. Let $\mathcal{J} \subseteq \mathcal{I}$ be a point-finite family of subsets of X such that $\bigcup \mathcal{J} \notin \mathcal{I}$. Then there is a subfamily $\mathcal{J}' \subseteq \mathcal{J}$ such that $\bigcup \mathcal{J}' \notin \mathcal{B}$.

from main theorem

- 6. If the family S is multiplicative and \mathcal{I} -Lindelöf, then there exists a decreasing sequence $(\Sigma_n)_{n \in \omega} \in (\sigma S)^{\omega}$ such that
 - i. for every $n \in \omega$ and $s \in 2^n$ we have $\mathcal{S}(\bigcup \mathcal{J}_s \setminus \Sigma_n) \subseteq \mathcal{I}$;
 - ii. for every $S \in S \setminus I$ there exist $C \in C(S) \setminus I$ such that either $S(C \cap \Sigma_n) \subseteq I$ for some $n \in \omega$ or $S(C \setminus J) \subseteq I$ for some $J \in J$.

Measure case

For any point-finite subfamily $\mathcal{J} \subseteq \mathcal{N}$ and any $\varepsilon > 0$ there exist a Borel set $A \subseteq [0,1]$ of measure $\lambda(A) > 1 - \varepsilon$ and a finite partition $\mathcal{J} = \mathcal{J}_1 \cup \cdots \cup \mathcal{J}_n$ such that $\lambda_*(A \cap \bigcup \mathcal{J}_i) = 0$ for $i \in \{1, \ldots, n\}$.

Theorem(Fremlin, Todorcevic)

If $\mathcal{J} \subseteq \mathcal{N}$ is a partition of [0, 1] and $\varepsilon > 0$ then there exists a partition $\mathcal{J} = \mathcal{J}_1 \cup \mathcal{J}_2$ such that $\lambda_*(\bigcup \mathcal{J}_i) < \varepsilon$ for i = 1, 2.

from main theorem

- 6. If the family S is multiplicative and \mathcal{I} -Lindelöf, then there exists a decreasing sequence $(\Sigma_n)_{n \in \omega} \in (\sigma S)^{\omega}$ such that
 - i. for every $n \in \omega$ and $s \in 2^n$ we have $\mathcal{S}(\bigcup \mathcal{J}_s \setminus \Sigma_n) \subseteq \mathcal{I}$;
 - ii. for every $S \in S \setminus I$ there exist $C \in C(S) \setminus I$ such that either $S(C \cap \Sigma_n) \subseteq I$ for some $n \in \omega$ or $S(C \setminus J) \subseteq I$ for some $J \in J$.

Category case

For any point-finite subfamily $J \subseteq \mathcal{M}$ there exists a closed nowhere dense set $D \subseteq [0, 1]$ such that for any neighborhood U of D in X there exists a finite partition $\mathcal{J} = \mathcal{J}_1 \cup \cdots \cup \mathcal{J}_n$ such that for every $i \in \{1, \ldots, n\}$ the set $\bigcup \mathcal{J}_i \setminus U$ contains no non-meager Borel subsets of [0, 1]. Thank You for Your Attention!

Taras Banakh, Robert Rałowski, Szymon Żeberski, A set-cover game and nonmeasurable unions, https://arxiv.org/pdf/2011.11342.pdf