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Theorem (Brzuchowski, Cichoń, Grzegorek, Ryll-Nardzewski)

Let X - Polish space, I ⊆ P(X ) - σ-ideal with Borel base. If

I J ⊆ I point-finite family,
i.e. ∀x ∈ X {A ∈ A : x ∈ A} is finite,

I
⋃
J /∈ I,

then there exists J ′ ⊆ J such that
⋃
J ′ is not I-measurable,

i.e. does not belong to the σ-field generated by σ-ideal I and
σ-field of all Borel subsets Bor(X ).
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Theorem(Fremlin, Todorcevic)

If J ⊆ N is a partition of [0, 1] and ε > 0 then there exists
J ′ ⊆ J such that

λ∗(
⋃
J ′) < ε and λ∗(

⋃
J ′) > 1− ε.

Theorem(Cichoń, Ra lowski, Ryll-Nardzewski, Morayne,
Żeberski)

If J ⊆M is a partition of [0, 1] then there exists J ′ ⊆ J such
that

⋃
J ′ is completely M-nonmeasurable.
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Set-Cover game aS,C
Two players S and C on a set X , endowed with two families of
subsets S and C.

The player S starts the game choosing a set S0 ∈ S and the player
C answers suggesting a countable cover C0 ⊆ C of S0.

At the n-th inning player S selects a set Sn ∈ S with Sn ≺ Cn−1

and player C answers with a countable cover Cn ∈ C of the set Sn.

The player C is declared the winner if
⋂

n∈ω Sn 6= ∅.
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Main result
Let I be a σ-ideal on a set X and S, C be two families of subsets
of a set X such that the player C has a winning strategy in the
game aS\I,C . For every point-finite subfamily J ⊆ I of cardinality
0 < |J | ≤ c, there exists a Cantor scheme (Js)s∈2<ω with J∅ = J
that has the following properties.

1. For any set S ⊆ X with S ∩
⋃
J /∈ I, the set

{t ∈ 2<ω : S ∩
⋃
Jt /∈ I} is a perfect subtree of the tree 2<ω.

2. For any σ ∈ 2<ω and S ∈ S with S ∩
⋃
Jσ /∈ I, there exist a

sequence s ∈ 2<ωσ and a set C ∈ C(S) with C ∩
⋃
Js /∈ I

such that the set {t ∈ 2<ωs : S(C ∩
⋃
Jt) 6⊆ I} is a chain in

the tree 2<ω.

3. For any σ ∈ 2<ω and S ∈ S with S ∩
⋃
Jσ /∈ I, there exist a

sequence s ∈ 2<ω and a set C ∈ C(S) such that σ ⊂ s,
C ∩

⋃
Js /∈ I and S(C ∩

⋃
Js) ⊆ I.



... main result ...

4. For any σ ∈ 2<ω and S ∈ S(
⋃
Jσ) \ I there exist a sequence

s ∈ 2<ωσ and a set C ∈ C(S ∩
⋃
Js) \ I such that the set

{t ∈ 2<ωs : S(C ∩
⋃
Jt) 6⊆ I} is a chain in the tree 2<ω.

5. For any σ ∈ 2<ω and S ∈ S(
⋃
Jσ) \ I there exist a sequence

s ∈ 2<ωσ and a set C ∈ C(S ∩
⋃
Js) \ I such that either

S(C \ J) ⊆ I for some J ∈ J or S(C ∩
⋃
Jt) ⊆ I for any

sequence t ∈ 2<ω with s ⊂ t.

6. If the family S is multiplicative and I-Lindelöf, then there
exists a decreasing sequence (Σn)n∈ω ∈ (σS)ω such that

i. for every n ∈ ω and s ∈ 2n we have S(
⋃
Js \ Σn) ⊆ I;

ii. for every S ∈ S \ I there exist C ∈ C(S) \ I such that either
S(C ∩ Σn) ⊆ I for some n ∈ ω or S(C \ J) ⊆ I for some
J ∈ J .



Definition
Let I be an ideal on a set X . A family A of subsets of X is called

I multilplicative iff for any A,A′ ∈ A A ∩ A′ ∈ A;

I I-Lindelöf if for any subset S ⊆ X , there exists a countable
subfamily F ⊆ A(S) such that A(S \

⋃
F) ⊆ I;

I I-ccc if each disjoint subfamily F ⊆ A \ I is at most
countable.

Lemma
Let I be an ideal on a set X and A be a family of subsets of X . If
A is I-ccc, then A is I-Lindelöf.



S ⊆ X is

I (A, I)-measurable if there are sets A1,A2 ∈ A such that
A1 ⊆ S ⊆ X \ A2 and X \ (A1 ∪ A2) ∈ I;

I (A, I)-saturated if for any A ∈ A with A ∩ S /∈ I we have
A(A ∩ S) 6⊆ I;

I (A \ I)-Ramsey if for every A ∈ A \ I there exists B ∈ A \ I
such that B ⊆ A ∩ S or B ⊆ A \ S .

A is I-winning iff C has a winning strategy in the game aA\I,A
Corrolary

Let I be a σ-ideal on a set X and A be an I-winning class of
subsets of X . Let J ⊆ I be a point-finite subfamily such that
|J | ≤ c.

1. If
⋃
J /∈ I, then for some J ′ ⊆ J the union J ′ is not

(A, I)-saturated and hence is not (σA, I)-measurable.

2. If A(
⋃
J ) 6⊆ I, then for some J ′ ⊆ J the union

⋃
J ′ is not

(A \ I)-Ramsey.
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Polishable families
X - topological space, A ⊆ P(X ).
A is Polishable family iff for any A ∈ A there are PA, fA,BA such
that

1. PA is a Polish space, BA is a countable topological base of PA,

2. fA : PA → X is continuous and f [PA] = A,

3. {fA[B] : B ∈ BA} ⊆ A.

Theorem
X - Hausdorff space, A ⊆ P(X ) - multiplicative Polishable family,
I ⊆ P(X ) σ-ideal on X . Then C has a winning strategy in aA\I,A.



Topological space X is

I functionally Hausdorff if for any distinct x , y ∈ X exists map
g : X → R s.t. f (x) 6= f (y),

I analytic if X is functionally Hausdorff and there exists a
continuous surjection f : P → X for some Polish space P,

I Borel if X is functionally Hausdorff and there exists a
continuous bijection f : P → X for some Polish space P.



Examples of Polishable families

I For every analytic space X , the family Σ1
1(X ) of analytic

subspaces is multiplicative Polishable family.

I For every Polish space X , the Borel classes Σ0
α(X ),

∏0
α(X )

and ∆0
β(X ) 1 ≤ α < β < ω1 are Polishable and multiplicative.

I For every Borel space X , the family ∆1
1(X ) of Borel subspaces

is multiplicative Polishable family.



MB-representation

Given any family F of subsets of a set X , consider the families

S0(F) = {A ⊆ X : ∀F ∈ F ∃H ∈ F (H ⊆ F \ A)}

S(F) = {A ⊆ X : ∀F ∈ F ∃H ∈ F (H ⊆ F ∩ A ∨ H ⊆ F \ A)}.

Corollary

Let X be a Polish space and a pair (B, I) be MB-representable by a
family F consisting of Borel sets. Assume that B contains all Borel
sets. Let J ⊆ I be a point-finite family of subsets of X such that⋃
J /∈ I. Then there is a subfamily J ′ ⊆ J such that

⋃
J ′ /∈ B.
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from main theorem
6. If the family S is multiplicative and I-Lindelöf, then there

exists a decreasing sequence (Σn)n∈ω ∈ (σS)ω such that

i. for every n ∈ ω and s ∈ 2n we have S(
⋃
Js \ Σn) ⊆ I;

ii. for every S ∈ S \ I there exist C ∈ C(S) \ I such that either
S(C ∩ Σn) ⊆ I for some n ∈ ω or S(C \ J) ⊆ I for some
J ∈ J .

Measure case
For any point-finite subfamily J ⊆ N and any ε > 0 there exist a
Borel set A ⊆ [0, 1] of measure λ(A) > 1− ε and a finite partition
J = J1 ∪ · · · ∪ Jn such that λ∗(A ∩

⋃
Ji ) = 0 for i ∈ {1, . . . , n}.

Theorem(Fremlin, Todorcevic)

If J ⊆ N is a partition of [0, 1] and ε > 0 then there exists a
partition J = J1 ∪ J2 such that λ∗(

⋃
Ji ) < ε for i = 1, 2.



from main theorem
6. If the family S is multiplicative and I-Lindelöf, then there

exists a decreasing sequence (Σn)n∈ω ∈ (σS)ω such that

i. for every n ∈ ω and s ∈ 2n we have S(
⋃
Js \ Σn) ⊆ I;

ii. for every S ∈ S \ I there exist C ∈ C(S) \ I such that either
S(C ∩ Σn) ⊆ I for some n ∈ ω or S(C \ J) ⊆ I for some
J ∈ J .

Category case

For any point-finite subfamily J ⊆M there exists a closed
nowhere dense set D ⊆ [0, 1] such that for any neighborhood U of
D in X there exists a finite partition J = J1 ∪ · · · ∪ Jn such that
for every i ∈ {1, . . . , n} the set

⋃
Ji \ U contains no non-meager

Borel subsets of [0, 1].
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game and nonmeasurable unions,
https://arxiv.org/pdf/2011.11342.pdf


